module utilsforecast.plotting
Time series visualizations
Global Variables
- TYPE_CHECKING
function plot_series
df(pandas or polars DataFrame, optional): DataFrame with columns [id_col,time_col,target_col]. Defaults to None.forecasts_df(pandas or polars DataFrame, optional): DataFrame with columns [id_col,time_col] and models. Defaults to None.ids(list of str, optional): Time Series to plot. If None, time series are selected randomly. Defaults to None.plot_random(bool, optional): Select time series to plot randomly. Defaults to True.max_ids(int, optional): Maximum number of ids to plot. Defaults to 8.models(list of str, optional): Models to plot. Defaults to None.level(list of float, optional): Prediction intervals to plot. Defaults to None.max_insample_length(int, optional): Maximum number of train/insample observations to be plotted. Defaults to None.plot_anomalies(bool, optional): Plot anomalies for each prediction interval. Defaults to False.engine(str, optional): Library used to plot. ‘plotly’, ‘plotly-resampler’ or ‘matplotlib’. Defaults to ‘matplotlib’.palette(str, optional): Name of the matplotlib colormap to use for the plots. If None, uses the current style. Defaults to None.id_col(str, optional): Column that identifies each serie. Defaults to ‘unique_id’.time_col(str, optional): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.target_col(str, optional): Column that contains the target. Defaults to ‘y’.seed(int, optional): Seed used for the random number generator. Only used if plot_random is True. Defaults to 0.resampler_kwargs(dict, optional): Keyword arguments to be passed to plotly-resampler constructor. For further custumization (“show_dash”) call the method, store the plotting object and add the extra arguments to itsshow_dashmethod. Defaults to None. ax (matplotlib axes, array of matplotlib axes or plotly Figure, optional): Object where plots will be added. Defaults to None.
matplotlib or plotly figure: Plot’s figure

