module utilsforecast.data
Utilies for generating time series datasets
function generate_series
n_series(int): Number of series for synthetic panel.freq(str, optional): Frequency of the data (pandas alias). Seasonalities are implemented for hourly, daily and monthly. Defaults to ‘D’.min_length(int, optional): Minimum length of synthetic panel’s series. Defaults to 50.max_length(int, optional): Maximum length of synthetic panel’s series. Defaults to 500.n_static_features(int, optional): Number of static exogenous variables for synthetic panel’s series. Defaults to 0.equal_ends(bool, optional): Series should end in the same timestamp. Defaults to False.with_trend(bool, optional): Series should have a (positive) trend. Defaults to False.static_as_categorical(bool, optional): Static features should have a categorical data type. Defaults to True.n_models(int, optional): Number of models predictions to simulate. Defaults to 0.level(list of float, optional): Confidence level for intervals to simulate for each model. Defaults to None.engine(str, optional): Output Dataframe type. Defaults to ‘pandas’.seed(int, optional): Random seed used for generating the data. Defaults to 0.
pandas or polars DataFrame: Synthetic panel with columns [unique_id,ds,y] and exogenous features.

