module utilsforecast.evaluation
Model performance evaluation
function evaluate
df(pandas, polars, dask or spark DataFrame): Forecasts to evaluate. Must haveid_col,time_col,target_coland models’ predictions.metrics(list of callable): Functions with argumentsdf,models,id_col,target_coland optionallytrain_df.models(list of str, optional): Names of the models to evaluate. IfNonewill use every column in the dataframe after removing id, time and target. Defaults to None.train_df(pandas, polars, dask or spark DataFrame, optional): Training set. Used to evaluate metrics such asmase. Defaults to None.level(list of int, optional): Prediction interval levels. Used to compute losses that rely on quantiles. Defaults to None.id_col(str, optional): Column that identifies each serie. Defaults to ‘unique_id’.time_col(str, optional): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.target_col(str, optional): Column that contains the target. Defaults to ‘y’.agg_fn(str, optional): Statistic to compute on the scores by id to reduce them to a single number. Defaults to None.
pandas, polars, dask or spark DataFrame: Metrics with one row per (id, metric) combination and one column per model. Ifagg_fnis notNone, there is only one row per metric.

