module utilsforecast.feature_engineering
Create exogenous regressors for your models
function fourier
df(pandas or polars DataFrame): Dataframe with ids, times and values for the exogenous regressors.freq(str or int): Frequency of the data. Must be a valid pandas or polars offset alias, or an integer.season_length(int): Number of observations per unit of time.Ex: 24 Hourly data.k(int): Maximum order of the fourier termsh(int, optional): Forecast horizon. Defaults to 0.id_col(str, optional): Column that identifies each serie. Defaults to ‘unique_id’.time_col(str, optional): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.
tuple[pandas or polars DataFrame, pandas or polars DataFrame]: A tuple containing the original DataFrame with the computed features and DataFrame with future values.
function trend
df(pandas or polars DataFrame): Dataframe with ids, times and values for the exogenous regressors.freq(str or int): Frequency of the data. Must be a valid pandas or polars offset alias, or an integer.h(int, optional): Forecast horizon. Defaults to 0.id_col(str, optional): Column that identifies each serie. Defaults to ‘unique_id’.time_col(str, optional): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.
tuple[pandas or polars DataFrame, pandas or polars DataFrame]: A tuple containing the original DataFrame with the computed features and DataFrame with future values.
function time_features
df(pandas or polars DataFrame): Dataframe with ids, times and values for the exogenous regressors.freq(str or int): Frequency of the data. Must be a valid pandas or polars offset alias, or an integer.features(list of str or callable): Features to compute. Can be string aliases of timestamp attributes or functions to apply to the times.h(int, optional): Forecast horizon. Defaults to 0.id_col(str, optional): Column that identifies each serie. Defaults to ‘unique_id’.time_col(str, optional): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.
tuple[pandas or polars DataFrame, pandas or polars DataFrame]: A tuple containing the original DataFrame with the computed features and DataFrame with future values.
function future_exog_to_historic
h steps.
Args:
df(pandas or polars DataFrame): Dataframe with ids, times and values for the exogenous regressors.freq(str or int): Frequency of the data. Must be a valid pandas or polars offset alias, or an integer.features(list of str): Features to be converted into historic.h(int, optional): Forecast horizon. Defaults to 0.id_col(str, optional): Column that identifies each serie. Defaults to ‘unique_id’.time_col(str, optional): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.
tuple[pandas or polars DataFrame, pandas or polars DataFrame]: A tuple containing the original DataFrame with the computed features and DataFrame with future values.
function pipeline
df(pandas or polars DataFrame): Dataframe with ids, times and values for the exogenous regressors.features(list of callable): List of features to compute. Must take only df, freq, h, id_col and time_col (other arguments must be fixed).freq(str or int): Frequency of the data. Must be a valid pandas or polars offset alias, or an integer.h(int, optional): Forecast horizon. Defaults to 0.id_col(str, optional): Column that identifies each serie. Defaults to ‘unique_id’.time_col(str, optional): Column that identifies each timestep, its values can be timestamps or integers. Defaults to ‘ds’.
tuple[pandas or polars DataFrame, pandas or polars DataFrame]: A tuple containing the original DataFrame with the computed features and DataFrame with future values.

