TimeGPT on top of Ray.
Outline:
1. Installation
Install Ray through Fugue. Fugue provides an easy-to-use interface for distributed computing that lets users execute Python code on top of several distributed computing frameworks, including Ray.Note You can installIf executing on a distributedfuguewithpip:
Ray cluster, ensure that the nixtla
library is installed across all the workers.
2. Load Data
You can load your data as apandas DataFrame. In this tutorial, we
will use a dataset that contains hourly electricity prices from
different markets.
| unique_id | ds | y | |
|---|---|---|---|
| 0 | BE | 2016-10-22 00:00:00 | 70.00 |
| 1 | BE | 2016-10-22 01:00:00 | 37.10 |
| 2 | BE | 2016-10-22 02:00:00 | 37.10 |
| 3 | BE | 2016-10-22 03:00:00 | 44.75 |
| 4 | BE | 2016-10-22 04:00:00 | 37.10 |
3. Initialize Ray
InitializeRay and convert the pandas DataFrame to a Ray DataFrame.
4. Use TimeGPT on Ray
UsingTimeGPT on top of Ray is almost identical to the
non-distributed case. The only difference is that you need to use a
Ray DataFrame.
First, instantiate the
NixtlaClient
class.
👍 Use an Azure AI endpoint To use an Azure AI endpoint, set theThen use any method from thebase_urlargument:nixtla_client = NixtlaClient(base_url="you azure ai endpoint", api_key="your api_key")
NixtlaClient
class such as
forecast
or
cross_validation.
📘 Available models in Azure AI If you are using an Azure AI endpoint, please be sure to setTo visualize the result, use themodel="azureai":nixtla_client.forecast(..., model="azureai")For the public API, we support two models:timegpt-1andtimegpt-1-long-horizon. By default,timegpt-1is used. Please see this tutorial on how and when to usetimegpt-1-long-horizon.
to_pandas method to convert the
output of Ray to a pandas DataFrame.
| unique_id | ds | TimeGPT | |
|---|---|---|---|
| 55 | NP | 2018-12-24 07:00:00 | 55.387066 |
| 56 | NP | 2018-12-24 08:00:00 | 56.115517 |
| 57 | NP | 2018-12-24 09:00:00 | 56.090714 |
| 58 | NP | 2018-12-24 10:00:00 | 55.813717 |
| 59 | NP | 2018-12-24 11:00:00 | 55.528519 |
| unique_id | ds | cutoff | TimeGPT | |
|---|---|---|---|---|
| 295 | NP | 2018-12-23 19:00:00 | 2018-12-23 11:00:00 | 53.632019 |
| 296 | NP | 2018-12-23 20:00:00 | 2018-12-23 11:00:00 | 52.512775 |
| 297 | NP | 2018-12-23 21:00:00 | 2018-12-23 11:00:00 | 51.894035 |
| 298 | NP | 2018-12-23 22:00:00 | 2018-12-23 11:00:00 | 51.06572 |
| 299 | NP | 2018-12-23 23:00:00 | 2018-12-23 11:00:00 | 50.32592 |
TimeGPT on top of Ray. To
do this, please refer to the Exogenous
Variables
tutorial. Just keep in mind that instead of using a pandas DataFrame,
you need to use a Ray DataFrame instead.
5. Shutdown Ray
When you are done, shutdown theRay session.

